Divisors of Mersenne Numbers By Samuel
نویسنده
چکیده
We add to the heuristic and empirical evidence for a conjecture of Gillies about the distribution of the prime divisors of Mersenne numbers. We list some large prime divisors of Mersenne numbers Mp in the range 17000 < p < 105.
منابع مشابه
On an Invariant of Divisors of Mersenne Number
where p is prime. In our paper we use the latter name. In this form numbers Mp at the first time were studied by Marin Mersenne (1588-1648) at least in 1644 (see in [1, p.9] and a large bibliography there). In our paper we show that all composite Mersenne numbers belong to a class S of pseudoprimes of base 2 which is a subclass of super-Poulet pseudoprimes. Analysis of properties of pseudoprime...
متن کاملOverpseudoprimes, Mersenne Numbers and Wieferich Primes
We introduce a new class of pseudoprimes-so called ”overpseudoprimes” which is a special subclass of super-Poulet pseudoprimes. Denoting via h(n) the multiplicative order of 2 modulo n,we show that odd number n is overpseudoprime if and only if the value of h(n) is invariant of all divisors d > 1 of n. In particular, we prove that all composite Mersenne numbers 2 − 1, where p is prime, and squa...
متن کاملSums of Prime Divisors and Mersenne Numbers
The study of the function β(n) originated in the paper of Nelson, Penney, and Pomerance [7], where the question was raised as to whether the set of Ruth-Aaron numbers (i.e., natural numbers n for which β(n) = β(n+ 1)) has zero density in the set of all positive integers. This question was answered in the affirmative by Erdős and Pomerance [5], and the main result of [5] was later improved by Po...
متن کاملGeneralization of a Theorem of Drobot
It is well known that the Fibonacci number Fn can be a prime only If n 4 or n p, where p is an odd prime. Throughout this paper, p will denote a prime. In a very interesting paper, Drobot [2] proved that Fp is composite for certain primes p. In particular, he proved that if p > 7, p = 2 or 4 (mod 5), and 2p -1 is also a prime, then 2p -11 Fp and Fp > 2p . For example, 371 Fl9 = 4181-37-113. A s...
متن کاملPrimes Generated by Recurrence Sequences
will contain infinitely many prime terms — known as Mersenne primes. The Mersenne prime conjecture is related to a classical problem in number theory concerning perfect numbers. A whole number is said to be perfect if, like 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14, it is equal to the sum of all its divisors apart from itself. Euclid pointed out that 2k−1(2k − 1) is perfect whenever 2 − 1 is pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010